Beispiel 076 - Gozintograph: Unterschied zwischen den Versionen

Aus Aufbereitungsrichtlinien
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: „Category: Übungsbeispiele Category: SE1 Category: SE2 ==Übungstyp und Quelle== ;Übungstyp :Ausfüllen ;Vorhandene Inhaltstypen :Formel ;…“)
 
 
(8 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 2: Zeile 2:
 
[[Category: SE1]]
 
[[Category: SE1]]
 
[[Category: SE2]]
 
[[Category: SE2]]
 +
[[Category: Restliche Grafiken]]
 +
[[Category: Formel]]
 +
 +
[[Category: Ausfüllen]]
 +
[[Category: Nummerierung/Kennzeichnung von Beispielen]]
 +
[[Category: Absatz]]
 +
 
==Übungstyp und Quelle==
 
==Übungstyp und Quelle==
 
;Übungstyp
 
;Übungstyp
Zeile 8: Zeile 15:
 
:[[Formel]]
 
:[[Formel]]
 
;Vorhandene Strukturelemente
 
;Vorhandene Strukturelemente
:-
+
:[[Nummerierung / Kennzeichnung von Beispielen]]
 +
:[[Absatz]]
 
;Aus dem Schulbuch
 
;Aus dem Schulbuch
 
:Beispiel B_164 aus den Übungsbeispielen Angewandte Mathematik srdp.at
 
:Beispiel B_164 aus den Übungsbeispielen Angewandte Mathematik srdp.at
Zeile 21: Zeile 29:
  
 
<div style="background-color: #DBE5F1; padding: 5px 15px; font-family:Courier; font-size:12px; line-height: 150%;">
 
<div style="background-color: #DBE5F1; padding: 5px 15px; font-family:Courier; font-size:12px; line-height: 150%;">
 +
 +
!!Kosten und Gewinn
  
 
+++B-164 Kosten und Gewinn
 
+++B-164 Kosten und Gewinn
Zeile 30: Zeile 40:
 
---
 
---
  
<nowiki>{{</nowiki>Beschreibung des Gozinto-Graphen
+
<nowiki>{{</nowiki>Grafik: Beschreibung des Gozinto-Graphen
  
 
---
 
---
Zeile 50: Zeile 60:
 
10 Pfade:
 
10 Pfade:
  
P1: R_1(a)-Z_1(2)-E_1
+
P1: R_1(a) - Z_1(2) - E_1
  
P2: R_1(a)-Z_1(4)-E_2
+
P2: R_1(a) - Z_1(4) - E_2
  
P3: R_1(1)-Z_2(1)-E_1
+
P3: R_1(1) - Z_2(1) - E_1
  
P4: R_1(1)-Z_2(4)-E_2
+
P4: R_1(1) - Z_2(4) - E_2
  
P5: R_2(c)-Z_2(1)-E_1
+
P5: R_2(c) - Z_2(1) - E_1
  
P6: R_2(c)-Z_2(4)-E_2
+
P6: R_2(c) - Z_2(4) - E_2
  
P7: R_2(1)-Z_3(3)-E_1
+
P7: R_2(1) - Z_3(3) - E_1
  
P8: R_3(2)-Z_3(3)-E_2
+
P8: R_3(2) - Z_3(3) - E_2
  
P9: R_3(2)-Z_4(1)-E_1
+
P9: R_3(2) - Z_4(1) - E_1
  
P10: R_3(2)-Z_4(3)-E_2<nowiki>}}</nowiki>
+
P10: R_3(2) - Z_4(3) - E_2<nowiki>}}</nowiki>
  
 
---
 
---
  
a.)  
+
a)  
  
 
Die Matrix RP beschreibt die Mengen an Rohstoffen, die für die Produktion der Endprodukte pro ME jeweils benötigt werden:
 
Die Matrix RP beschreibt die Mengen an Rohstoffen, die für die Produktion der Endprodukte pro ME jeweils benötigt werden:
Zeile 96: Zeile 106:
 
'''[]'''
 
'''[]'''
  
-----
+
<nowiki>---</nowiki>
  
b.)  
+
b)  
  
 
Der Materialbestand im Lager beträgt 1460 ME von R_1, 660 ME von R_2 und 1160 ME von R_3. Es wird eine Produktion gestartet, die nach dem obigen Gozinto-Graphen mit der Matrix RP ='mat[3|2]([5;12][1;7][2;12]) abläuft. (Hinweis: a =2 und c =1 sind hier vorgegeben.)
 
Der Materialbestand im Lager beträgt 1460 ME von R_1, 660 ME von R_2 und 1160 ME von R_3. Es wird eine Produktion gestartet, die nach dem obigen Gozinto-Graphen mit der Matrix RP ='mat[3|2]([5;12][1;7][2;12]) abläuft. (Hinweis: a =2 und c =1 sind hier vorgegeben.)
Zeile 111: Zeile 121:
  
 
-) Berechnen Sie die entsprechenden Absatzmengen.
 
-) Berechnen Sie die entsprechenden Absatzmengen.
 
'''[]'''
 
 
-----
 
 
c.)
 
 
Bei einem Produktionsgang stellt man von dem Endprodukt P_2 x Mengeneinheiten (ME) her. Die Herstellungskosten in Geldeinheiten (GE) für dieses Produkt lassen sich mit
 
 
K(x) =2,5 *x^2 +59 *x +80 beschreiben.
 
 
Der Erlös in GE beim Verkauf des Produkts beträgt E(x) =187 *x -6 *x^2.
 
 
Es wird angenommen, dass die gesamte Produktion von P_2 verkauft werden kann.
 
 
---
 
 
-) Berechnen Sie, bei welcher Absatzmenge ein maximaler Gewinn zu erwarten ist.
 
 
'''[]'''
 
 
---
 
 
–) Dokumentieren Sie in Worten, wie man den Preis des Endprodukts beim Verkauf der gewinnoptimalen Menge erhalten kann.
 
 
'''[]'''
 
 
---
 
 
-) Lesen Sie aus dem obigen Gozinto-Graphen ab, wie viel Mengeneinheiten von den Zwischenprodukten für die gewinnoptimale Menge des Endprodukts P_2 benötigt werden.
 
  
 
'''[]'''
 
'''[]'''

Aktuelle Version vom 2. Juni 2022, 08:33 Uhr


Übungstyp und Quelle

Übungstyp
Ausfüllen
Vorhandene Inhaltstypen
Formel
Vorhandene Strukturelemente
Nummerierung / Kennzeichnung von Beispielen
Absatz
Aus dem Schulbuch
Beispiel B_164 aus den Übungsbeispielen Angewandte Mathematik srdp.at
Seite(n)
-

Original

76-gozinto.png

Aufbereitet

Bei der Beschreibung des Gozinto-Graphen folgt nach der Legende die Anzahl der Pfade und die einzelnen Pfade, die zu den Endprodukten führen. Die dazugehörigen Mengenangaben stehen in runden Klammern.

!!Kosten und Gewinn

+++B-164 Kosten und Gewinn

Ein Betrieb stellt aus den Rohstoffen R_1, R_2 und R_3 die Zwischenprodukte Z_1, Z_2, Z_3 und Z_4 und aus diesen die Endprodukte P_1 und P_2 her.

Die Materialverflechtung in Mengeneinheiten (ME) wird durch den nebenstehenden Gozinto-Graphen dargestellt.

---

{{Grafik: Beschreibung des Gozinto-Graphen

---

Legende:

Px ... Pfad x

R_x ... Rohstoff x

Z_x ... Zwischenprodukt x

E_x ... Endprodukt x (P_1; P_2)

---

Matrix RZ | Matrix ZP

10 Pfade:

P1: R_1(a) - Z_1(2) - E_1

P2: R_1(a) - Z_1(4) - E_2

P3: R_1(1) - Z_2(1) - E_1

P4: R_1(1) - Z_2(4) - E_2

P5: R_2(c) - Z_2(1) - E_1

P6: R_2(c) - Z_2(4) - E_2

P7: R_2(1) - Z_3(3) - E_1

P8: R_3(2) - Z_3(3) - E_2

P9: R_3(2) - Z_4(1) - E_1

P10: R_3(2) - Z_4(3) - E_2}}

---

a)

Die Matrix RP beschreibt die Mengen an Rohstoffen, die für die Produktion der Endprodukte pro ME jeweils benötigt werden:

RP ='mat[3|2]([5; 12][3; 15][2; 12])

---

–) Erstellen Sie die Matrix RZ, die die Mengen beschreibt, die jeweils von den Rohstoffen für die Zwischenprodukte benötigt werden.

[]

---

–) Berechnen Sie die fehlenden Werte a und c der Matrix RZ.

[]

---

–) Lesen Sie aus der Matrix ab, welche Mengen an Rohstoffen für die Erzeugung von 1 ME des Endprodukts P_1 verwendet werden.

[]

---

b)

Der Materialbestand im Lager beträgt 1460 ME von R_1, 660 ME von R_2 und 1160 ME von R_3. Es wird eine Produktion gestartet, die nach dem obigen Gozinto-Graphen mit der Matrix RP ='mat[3|2]([5;12][1;7][2;12]) abläuft. (Hinweis: a =2 und c =1 sind hier vorgegeben.)

---

–) Erstellen Sie eine Matrix-Gleichung zur Berechnung der bei diesem Lagerbestand möglichen Absatzmengen.

[]

---

-) Berechnen Sie die entsprechenden Absatzmengen.

[]

-----