Beispiel 160 - Eigenschaften einer periodischen Funktion: Unterschied zwischen den Versionen
(Eine dazwischenliegende Version desselben Benutzers wird nicht angezeigt) | |||
Zeile 36: | Zeile 36: | ||
charakteristische Werte einer Periode (Nullstellen bezogen auf die Mittellinie, Extremwerte); | charakteristische Werte einer Periode (Nullstellen bezogen auf die Mittellinie, Extremwerte); | ||
+ | |||
+ | |||
+ | Layouttabelle: nur visuelle "Tabelle", welche nicht als solche dargestellt wird, da diese einen unnötigen Mehraufwand für den Schüler darstellt. | ||
<div style="background-color: #DBE5F1; padding: 5px 15px; font-family:Courier; font-size:12px; line-height: 150%;"> | <div style="background-color: #DBE5F1; padding: 5px 15px; font-family:Courier; font-size:12px; line-height: 150%;"> |
Aktuelle Version vom 15. Mai 2024, 08:01 Uhr
Übungstyp und Quelle
- Übungstyp
- Auswählen
- Vorhandene Strukturelemente
- Nummerierung / Kennzeichnung von Beispielen
- Aus dem Schulbuch
- 195789
- Seite(n)
- 182
Original
Aufbereitet
Angaben bei periodischen Funktionen:
Begriff periodische Funktion;
punktsymmetrisch (zum Ursprung, zu …) oder achsensymmetrisch (zur senkrechten Achse; zu x = …);
verläuft wellenförmig ober- und unterhalb der waagrechten Achse (der Gerade y = …);
Beginn mit steigend/fallend lins-/rechtsgekrümmt und Quadranten;
Anzahl der Perioden;
charakteristische Werte einer Periode (Nullstellen bezogen auf die Mittellinie, Extremwerte);
Layouttabelle: nur visuelle "Tabelle", welche nicht als solche dargestellt wird, da diese einen unnötigen Mehraufwand für den Schüler darstellt.
+++813 |FA 1.5|
Eigenschaften einer Funktion II
Eine reelle Funktion f ist durch ihren Graphen gegeben.
{{Grafik: Koordinatensystem:
waagrechte Achse: x; [-5; 5], Skalierung: 1;
senkrechte Achse: y; [-1; 1], Skalierung: 1;
---
Der dargestellte Graph von f ist periodisch, verläuft wellenförmig oberhalb und unterhalb der waagrechten Achse und ist punktsymmetrisch zum Ursprung. Es sind ~~3 1/2 Perioden dargestellt. Charakteristische Wertepaare einer Periode (Nullstellen, Extremwerte) sind: (0|0); (~~0,8|1); (~~1,6|0); (~~2,4|-1); (~~3,2|0)}}
---
Aufgabenstellung:
Kreuzen Sie die beiden zutreffenden Aussagen an!
[] Jede Nullstelle von f ist auch eine Wendestelle.
[] Jede Extremstelle von f ist auch eine Wendestelle.
[] Jede Nullstelle von f liegt in der Mitte zwischen zwei Extremstellen.
[] Jede Extremstelle von f hat den Funktionswert 1.
[] Jede Wendestelle ist auch eine Extremstelle.
-----