Beispiel 189 - Monotonie: Unterschied zwischen den Versionen
(4 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt) | |||
Zeile 27: | Zeile 27: | ||
Grundsätzlich bei Verlaufsbeschreibungen wichtig: Krümmung, Symmetrie, ganzzahlige bzw. charakteristische Wertepaare; möglichst wenig Einzelwerte. | Grundsätzlich bei Verlaufsbeschreibungen wichtig: Krümmung, Symmetrie, ganzzahlige bzw. charakteristische Wertepaare; möglichst wenig Einzelwerte. | ||
− | <div style="background-color: #DBE5F1; padding: 5px 15px; font-family: | + | <div style="background-color: #DBE5F1; padding: 5px 15px; font-family:Courier; font-size:12px; line-height: 150%;"> |
− | +++955 | + | +++955 |AN 3.2| |
Monotonie einer Funktion | Monotonie einer Funktion | ||
Zeile 35: | Zeile 35: | ||
In der Abbildung ist der Graph einer Polynomfunktion vom Grad 3 dargestellt. | In der Abbildung ist der Graph einer Polynomfunktion vom Grad 3 dargestellt. | ||
− | {{Grafik: | + | {{Grafik: Koordinatensystem: |
− | + | waagrechte Achse: x; [-2; 6], Skalierung: 1; | |
− | + | senkrechte Achse: y; [-2; 4], Skalierung: 1; | |
− | |||
− | senkrechte Achse: y; [-2; 4] | ||
--- | --- | ||
− | Der dargestellte Graph von f ist punktsymmetrisch zu (2|1) und steigend. Er beginnt im 3. Quadranten rechtsgekrümmt, hat in (2|1) einen Sattelpunkt und endet linksgekrümmt steigend im 1. Quadranten. | + | Der dargestellte Graph von f ist punktsymmetrisch zu (2|1) und steigend. Er beginnt im 3. Quadranten rechtsgekrümmt, hat in (2|1) einen Sattelpunkt und endet linksgekrümmt steigend im 1. Quadranten.}} |
--- | --- |
Aktuelle Version vom 14. Februar 2023, 11:19 Uhr
Übungstyp und Quelle
- Übungstyp
- Ausfüllen
- Vorhandene Strukturelemente
- Nummerierung / Kennzeichnung von Beispielen
- Aus dem Schulbuch
- 195789
- Seite(n)
- 213
Original
Aufbereitet
Bei Beispielen mit Monotonie ist bei der Verlaufsbeschreibung das Krümmungsverhalten zu berücksichtigen.
Grundsätzlich bei Verlaufsbeschreibungen wichtig: Krümmung, Symmetrie, ganzzahlige bzw. charakteristische Wertepaare; möglichst wenig Einzelwerte.
+++955 |AN 3.2|
Monotonie einer Funktion
In der Abbildung ist der Graph einer Polynomfunktion vom Grad 3 dargestellt.
{{Grafik: Koordinatensystem:
waagrechte Achse: x; [-2; 6], Skalierung: 1;
senkrechte Achse: y; [-2; 4], Skalierung: 1;
---
Der dargestellte Graph von f ist punktsymmetrisch zu (2|1) und steigend. Er beginnt im 3. Quadranten rechtsgekrümmt, hat in (2|1) einen Sattelpunkt und endet linksgekrümmt steigend im 1. Quadranten.}}
---
Aufgabenstellung:
Begründen Sie anhand der Abbildung, dass folgende Aussage im allgemeinen nicht gilt:
Ist eine Funktion f auf einem Intervall [x_1; x_2] streng monoton steigend, dann ist f'(x) >0 für alle x 'el [x_1; x_2].
[]
-----